

Line Haul Road Transport

Navigating the Scalability of
Technology Pathways in Australia

November 2025

The Climate Leaders Coalition (CLC) acknowledges and pays our respects to Aboriginal and Torres Strait Islander peoples as the First Peoples of Australia, whose ancestral lands and waters we work and live on. We honour the wisdom of and pay respect to Elders past and present and acknowledge the cultural authority of all Aboriginal and Torres Strait Islander peoples across Australia.

Foreword

Australia's freight industry underpins our economy as a critical factor in connecting regions, industries, and communities. Yet, it is also one of the most complex sectors to decarbonise, while facing growing challenges around fuel security. Within this system, line haul road transport stands out as particularly challenging: long distances, heavy payloads unique to Australia, and limited refuelling infrastructure make the transition to net zero difficult, with no clear pathway yet established.

For the first time in Australia, leaders across the entire line haul value chain – from freight operators and customers to energy providers and financiers – have mobilised to engage on a viable path to decarbonisation. Since 2024, nine CLC member CEOs took a significant step forward in collectively reviewing and assessing different technologies, with an agreed focus on renewable diesel (RD), battery electric vehicles (BEV), and fuel cell electric vehicles (FCEV).

The scope of the work extends beyond a theoretical assessment. The project partners have collaborated on and explored practical deployment of the technologies along the 900km long Sydney to Melbourne corridor. With this, they aim to prove the concept of heavy duty line haul decarbonisation technologies, obtain operational and commercial learnings to the benefit of the industry and government, demonstrate tangible progress, and build industry momentum and demand signalling to the market.

This journey has brought clarity to the specific "key unlocks" needed to achieve commercial viability in line haul, from technological advances and infrastructure development to supportive policy frameworks and investments. Whilst RD is "ready now", albeit with some challenges to scale, both BEV and FCEV require further developments to become operationally and commercially viable.

Whilst this report marks the conclusion of this phase of collaboration of the project partners, it is just the beginning of a longer journey. For RD, the deployment simulation confirmed the technology's feasibility; however, current fuel pricing (~250% of conventional diesel) creates a structural commercial gap that is limiting adoption. Policy support could contribute to immediate scaling. RD is identified as a near - mid term solution to reduce lifecycle carbon emissions. For BEV and FCEV, the learnings from the pilot design and deployment simulations gave clarity on detailed commercial feasibility as well as the technology advancements required to tip the balance toward accelerated scaling. Project partners will continue to monitor technology maturity and reconvene in mid-2026 to align on-ground pilot activation with the arrival of next-generation heavy-duty assets, and re-assessment of FCEV viability. In the meantime, partners will leverage learnings from existing pilots in smaller settings (e.g., intrastate) to optimise the future pilot design for line haul.

The journey to net zero line haul will not be simple, but we believe it is achievable. By acting as one – industry value chain and government – we can build a system that is cleaner, more resilient, and future proof.

Ann Sherry

Co-Chair
Climate Leaders Coalition

John Lydon

Co-Chair
Climate Leaders Coalition

Beth Dowe

Executive Director
Climate Leaders Coalition

Lynette Mayne

Executive Chair
The B Team Australasia

Disclaimer: This document outlines insights from the CLC members that have been involved in decarbonising line haul road transport. It offers insights and learnings for others. It does not contain advice for other organisations. Organisations should seek their own independent advice if curious about content contained in this document.

Table of Contents

Executive Summary	3
Introduction to the CLC and Line Haul Working Group	5
Strategic assessment and prioritisation	12
Pilot design and deployment simulations	19
Where to from here	32
Acknowledgements	40

Decarbonising heavy duty line haul in Australia

What are the key unlocks needed to accelerate decarbonisation and transition to a more resilient line haul landscape?

Australia's line haul road transport is one of the nation's hardest-to-abate sectors, but also one of its biggest opportunities. Transport produces 20% of national emissions, with line haul accounting for ~15% of that. The sector's dependence on imported diesel also exposes the economy to price shocks and fuel insecurity. New pathways provide options to position the sector for growth and resilience.

Starting in 2024, the Climate Leaders Coalition (CLC) convened nine major organisations across freight, energy, and finance to identify suitable decarbonisation pathways, design pilots for real-world trials, and develop a scalable roadmap. This marks the first end-to-end value chain engagement on practical decarbonisation for Australian line haul freight.

Three key lessons have emerged.

1. **Three pathways are identified as preferable for deployment at scale to advance decarbonising line haul in Australia and position the sector for growth and resilience: RD, BEV, and FCEV.** A rigorous assessment of decarbonisation pathways across key criteria identified renewable diesel (RD), battery electric vehicle (BEV), and fuel cell electric vehicle (FCEV) as the most promising pathways. All three technologies have been investigated further for piloting and long-term pathways. **RD is “ready now”** as a drop-in fuel with limited modifications to fleet and infrastructure, but faces **supply constraints** at scale and limited potential to decarbonise as it reduces lifecycle carbon emissions. **BEV is a rapidly maturing, net-zero solution** that provides energy security, but requires **technology advances** to be suitable for scaled heavy duty line haulage. **FCEV is a net-zero technology with suitable characteristics** for heavy duty line haul, but would need to overcome significant **infrastructure availability challenges**. Although BEV and FCEV may offer favourable long-term Total Cost of Ownership (TCO) vs. conventional diesel, **all technologies currently face price barriers**, whether it be mainly upfront cost (BEV prime mover), fuel cost (RD), or both (FCEV).
2. **There is now greater clarity on “critical unlocks” required for commercial viability at scale.** The renewable diesel pilot design and deployment simulation demonstrated that the technology is technically viable but the **RD price premium** (vs. conventional diesel, ~250%) would need to be **brought down significantly for large-scale adoption**. In parallel, additional **local production or import** needs to be secured to overcome forecasted supply constraints. BEV deployment simulation along the 900km Sydney-Melbourne corridor shows that current battery capacity and combined ~3-hour total enroute charging times prevent typical line haul loads from being transported within regulated driver hours. **Next-generation BEV trucks** – expected to be available in Australia in 18-24 months - could enable a scalable solution due to expected range improvements (400+ km B-double) and charging power (1 MW) provided significant investments in **infrastructure to support fast charging** (e.g., **Megawatt Charging System** along key corridors). **FCEV** currently lacks **access to portable hydrogen refuelling stations**, preventing on-ground pilot deployment for now. Commercial viability will also hinge on **hydrogen production costs being reduced to ~\$5-6/kg** ideally through localised generation near Sydney on top of already existing facilities near Melbourne. Both **BEV and FCEV will be re-assessed for on-ground deployment in mid 2026**.
3. **Collaboration across the industry value chain, as well as industry-government partnership are a non-negotiable.** No single organisation can transition alone, which is underpinned by our pilot design findings. Joint investment and aligned policy will be critical to **overcome the “chicken and egg” dilemma of new product, vehicle and infrastructure economics**. Industry value chain collaboration will be key to integrate and jointly plan roll-out of new pathways as well as pool technology, fuel, and infrastructure demand to ensure timely and affordable access. Finally, government support will be needed to de-risk early capital expenditure and define supporting policies to help accelerate timelines.

Table of Contents

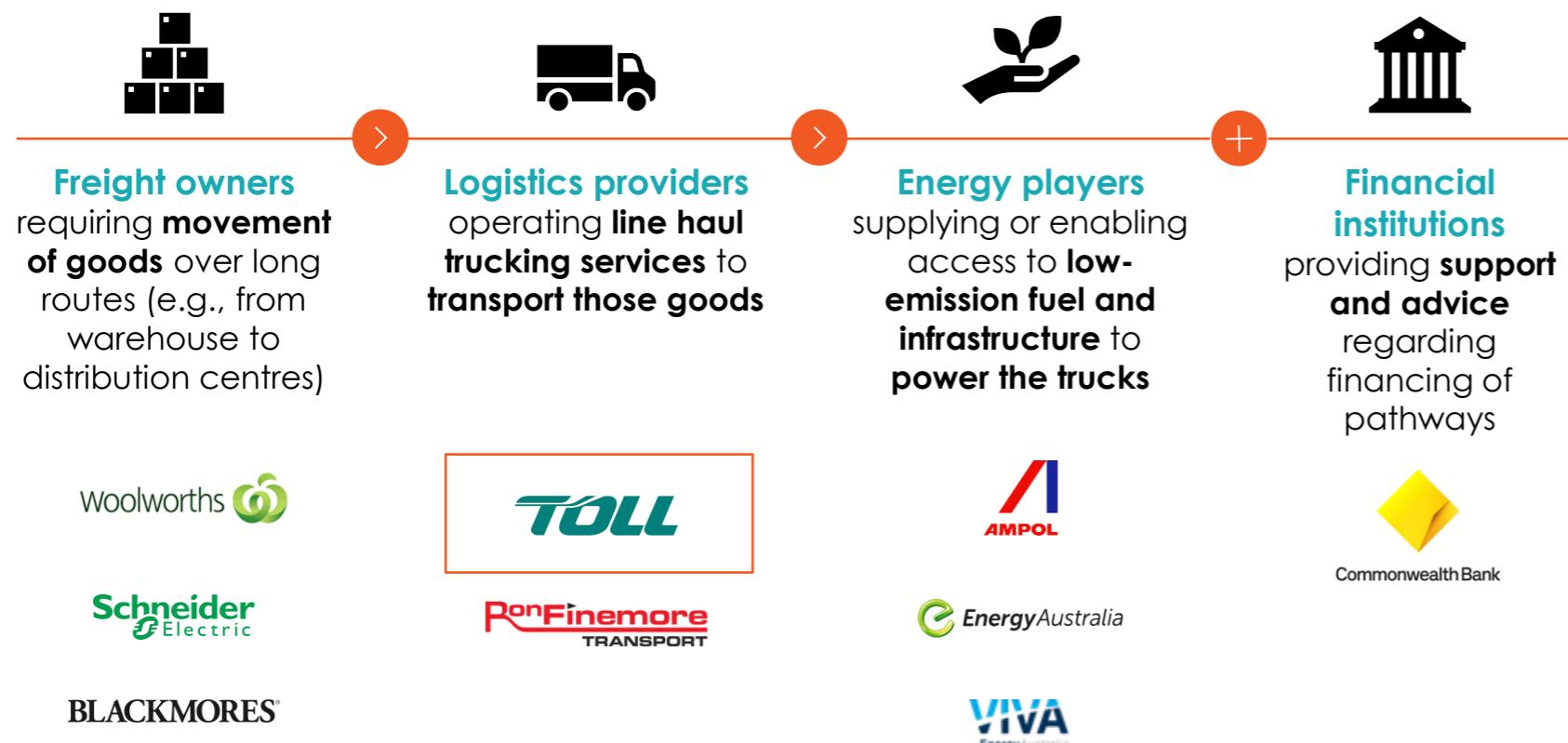
Executive Summary

Introduction to the CLC and Line Haul Working Group

Strategic assessment and prioritisation

Pilot design and deployment simulations

Where to from here


Acknowledgements

Nine leading organizations have come together as part of the Climate Leaders Coalition to accelerate progress in transitioning line haul road transport in Australia

Project sponsor

Context of working group

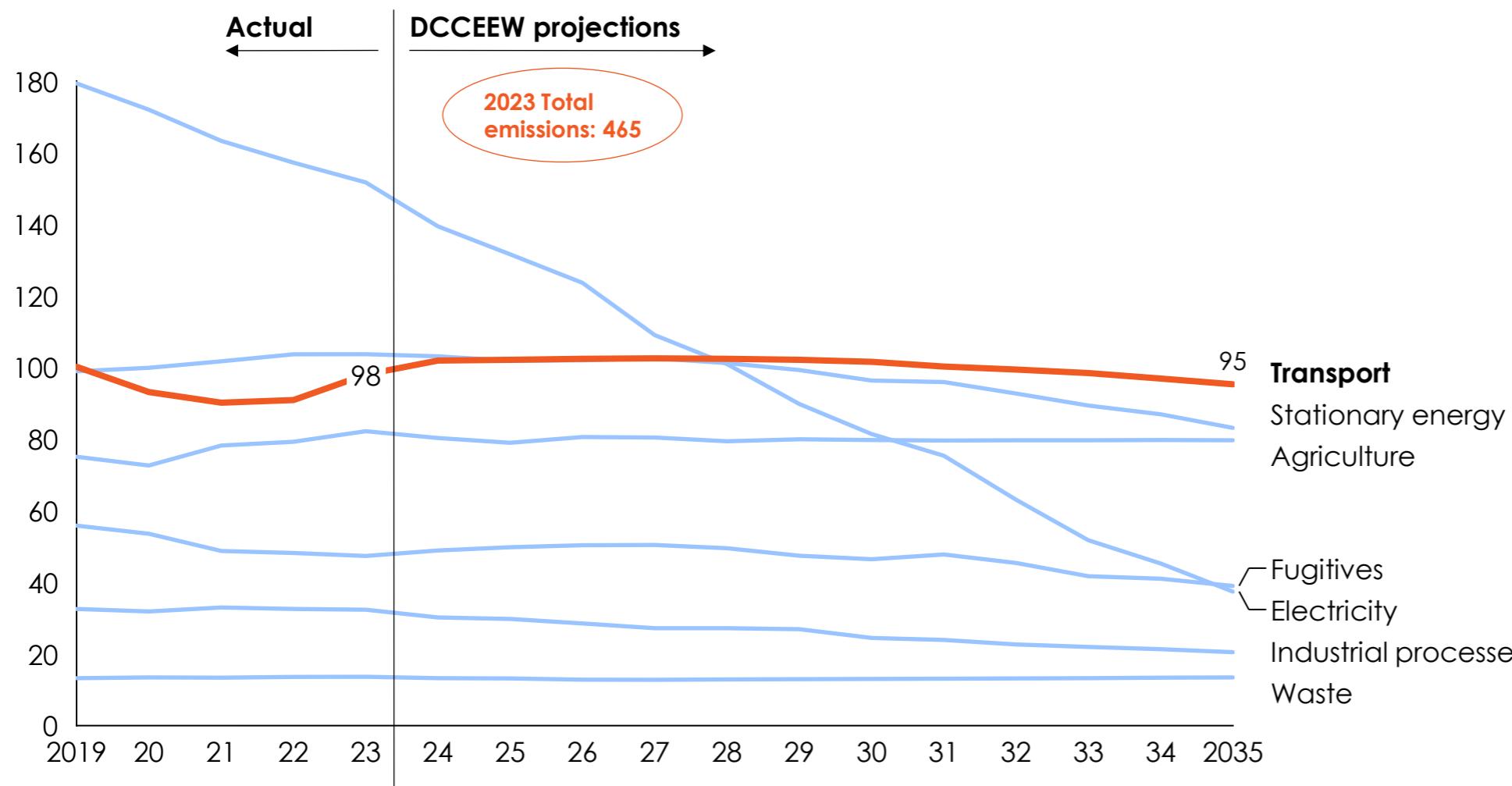
- Since **2024**, nine organizations have collaborated on a **ground-breaking effort to deploy their collective resources** to accelerate decarbonization in line haul
- The organizations represent stakeholders **across the entire value chain**: freight operators, energy providers, customers, financers, and other key stakeholders

Project objectives

- Jointly identify most suitable decarbonisation technologies** for heavy duty line haul trucking incl. prioritisation of technologies for piloting
- Prove the concept** of heavy duty line haul decarbonisation technologies in **Australian context**
- Develop insights** on freight operations, fuel supply & infrastructure, economics, and supply chain dynamics for **novel technologies**
- Demonstrate tangible progress in short/medium term** and design **pathway to scale**
- Build industry momentum** for critical unlocks

Decarbonising Australia's line haul freight is critical to curb rising emissions, enhance energy security, and build stability and resilience – all of which will require industry coordination and collaboration to unlock viable pathways

Transport currently emits **~20% of total Australian emissions** (98 MTCo2-e p.a.) and is likely to be the largest contributor to Australia's total GHG emissions from 2028. **Road freight line haul** contributes to **~15% of total transport emissions** (~13 MT CO2-e), making it one of the most material and hardest-to-abate segments, and therefore a **critical focus for national decarbonisation**.


While decarbonisation is the catalyst, the strategic **rationale to transition extends beyond climate impact**. Nearly every business depends on the freight and logistics industry, which underpins the Australian economy and accounts for approximately 9% of GDP. Australia's freight network is highly exposed to imported diesel, with **less than a month fuel supply** covered, exposing the economy to fuel security risk and global price shocks. With fuel typically accounting for **25-40% in line haul operating costs (#1 variable input)**, volatility in these markets directly drives **cost instability** for transport operators, industries, and consumers. At the same time, freight transport customers are increasingly demanding low-emission logistics to meet emission reduction targets or consumer demand, creating **competitive pressure to adapt**.

There are a number of **open questions about the solution in the Australian context**: whilst solutions are rapidly emerging for various transport modalities and pilots are underway around the world, there is currently no clear solution for tackling this in **Australia's unique conditions with large distances and heavy loads**, underpinned by a lack of Australia-specific performance data and practical operating and infrastructure knowledge along the value chain.

Industry coming together and **mobilising across the end-to-end value chain** will be critical to **create confidence and ensure an efficient, scalable pathway**.

Transport is forecast to become the largest contributor to Australia's carbon emissions by 2028

DCCEEW emissions projections 2023 - Emissions by sector in Australia 2019-2035, Mt CO2-e

As per DCCEEW Australia's emissions projections 2023, Transport, which currently emits **98 MtCO2-e (20% of total emissions)**, is likely to be the **largest contributor to Australia's total GHG emissions from 2028**

1. Freight assumed as rail, articulated trucks, rigid rucks and light commercial vehicles as per DCCEEW data

Moving to localised energy supply reduces exposure to global oil shocks, import disruptions, and price shocks, as Australia's freight network currently largely runs on imported diesel with less than a month's supply

Consumption cover, # days

Aviation turbine fuel	20
Diesel oil	24
Automotive gasoline	28
Crude oil and refinery feedstocks	38
Lubricating oils, greases & basestocks	51
Liquefied petroleum gas	71
Fuel oil	74
Aviation gasoline	156

- Almost **70% of diesel is currently imported** to meet Australian demand, leaving Australia's freight network **highly exposed to import risks and currency / price volatility**
 - Diesel only has **24 days of consumption cover**, meaning line-haul trucking would be severely constrained within three to four weeks of a major import disruption
 - Fuel typically represents **~25-40% in line haul operating cost**, meaning even small price volatility directly erodes margins or feeds through to end customers via inflation
- **Localising energy supply** helps build **energy security**, enhance **price stability**, and strengthen **supply-chain resilience**
 - Local production and use of alternative fuels anchors **control within Australia's borders**
 - Australia is **well positioned to develop and scale** low-carbon freight fuels, with its vast land availability, high solar irradiance, and strong wind capacity factors

Large Australian line haul customers are actively demanding low-emission logistics to meet targets and respond to customer expectations

Emissions visibility has become mandatory, with climate disclosures now requiring large Australian companies to report and assure Scope 3 emissions, triggering **accountability loops and expectations for progress**

Corporates are increasingly cascading their reduction targets to logistics suppliers, embedding carbon performance into procurement and supplier evaluation frameworks (e.g., BHP integrates sustainability considerations into procurement and logistics, Telstra is working with suppliers to reach its goal of reducing Scope 3 emissions by 50% by 2030)

Consumer brands are integrating “green delivery” as part of their value proposition using low-emission logistics to meet consumer demand and build competitive advantage (e.g., nearly 85% of IKEA truck orders in Australia in October 2025 were delivered in net-zero vehicles)

While regulatory developments in Australia have **established the minimum requirements** for emissions actions, **corporate ambition** and **consumer expectations** are driving the transition beyond compliance.

Coordinated industry and government action can position Australia to build a globally **competitive low-emission line haul ecosystem** that meets evolving market and policy demands.

Since the start of the journey in 2024, significant progress has been made through the collaboration of the participating companies with the Climate Leaders Coalition and with the support of partners

Complete

2026+

A Strategic assessment and pathway prioritization

Prioritisation of the 3 most promising Line Haul technologies via an in-depth strategic assessment against 8 lenses and 17 criteria: Renewable Diesel (RD), Battery Electric Vehicle (BEV), and Fuel Cell Electric Vehicle (FCEV)

B Pilot design

Detailed design for pilots based on core design principles, including maximising emission reduction and accelerating timelines

C Pilot deployment simulation

Simulated pilot outcomes by modelling detailed pilot scenarios and testing operational feasibility, cost implications, and critical success factors under real-world conditions

D Pilot on-ground implementation

Execution of real-world pilots to test technology performance, gather operational and commercial insights, and inform scaling strategies.

Table of Contents

Executive Summary

Introduction to the CLC and Line Haul Working Group

Strategic assessment and prioritisation

Pilot design and deployment simulations

Where to from here

Acknowledgements

Through extensive trade-off analysis and modelling, the project partners collaboratively selected three pathways for further detailing for piloting: Renewable Diesel, BEV, and FCEV

Initial pathways ¹	Pathway availability	Environmental impact	Holistic trade-off analysis on initial shortlist	Outcome on pathways
	Assessment			
	<p>Is the technology sufficiently mature for imminent usage in long distance, heavy truck haulage?</p> <p>Do OEMs have interest to cater the Australian market (e.g., develop trucks with sufficient payload)?</p>	<p>Does the technology have the ability to significantly reduce CO2-e emissions vs. diesel ICE?</p> <p>Is there any other impact on the environment associated with this technology (e.g., water usage)?</p>	<p>Detailed trade-off assessment of remaining shortlisted technologies / pathways² across holistic set of lenses and underlying criteria in order to prioritise technologies</p> <p>More detail on strategic assessment follows on next pages</p>	<p>Selected for further detailing for pilots</p>
Pathway prioritisation for further exploration	<p>✗ Biodiesel: Limited contribution to CLC decarbonisation ambition (blending limit at ~20%)</p> <p>✗ NH3 ICE: Limited use cases of NH3 in trucking; additional CO2-e emissions vs. H2 ICE (e.g., NOx)</p> <p>✗ NG ICE: Limited contribution to CLC decarbonisation ambition and limited use cases of natural gas (NG) in trucking</p>	<p>✓ Renewable diesel</p> <p>✓ BEV</p> <p>✓ FCEV</p> <p>✓ H2 ICE (blend and full H2)</p>	<p>Prioritised pathways:</p> <ul style="list-style-type: none"> • Renewable Diesel • BEV • FCEV 	

1. Renewable diesel, biodiesel, BEV, FCEV, H2 ICE, NH3 ICE, NG ICE

2. Renewable diesel, BEV, FCEV, H2 ICE

The project partners considered a broad range of decarbonisation fuel technologies that could potentially be viable and feasible for heavy duty line haul

Fuel type: Diesel Electricity Hydrogen Other

Technology	Powertrain description	Typical use case
Renewable Diesel (RD)	Combustion engine powered by combustion of hydrocarbon fuel produced from hydrotreating vegetable oils (HVO)	Long-haul transportation , especially in use cases in which low to moderate amounts of CO2-e reduction (abatement potential dependent on blend) in near-term is required (renewable diesel is a “drop-in” fuel)
Biodiesel	Combustion engine powered by combustion of a blend of conventional diesel and FAME (fatty acid methyl ester) , which is produced from esterification of vegetable oils	Long haul transportation and/or agriculture , especially in regions with access to biodiesel (e.g., agriculture), and in use cases in which low amounts of CO2-e reduction (maximum of 20% in blend) in near-term is required (biodiesel is a “drop-in” fuel)
BEV	Electric motor powered by electricity drawn from a battery	Urban commuting , with increasing adoption in short-haul trucking , especially in regions with existing recharging infrastructure or in net-zero use cases where technology readiness is important
FCEV	Electric motor powered by converting hydrogen to electricity by a fuel cell	Medium-to-long haul transportation and heavy-duty applications , especially in regions suitable for hydrogen production / with existing infrastructure or in net-zero use cases where quick refuelling is important
H2 ICE – Dual fuel	Combustion engine powered by combustion of diesel and hydrogen	Long haul transportation , especially in regions suitable for hydrogen production / with existing infrastructure infrastructure or in use cases where quick refuelling and/or limited vehicle retrofitting/investment is important
H2 ICE – Full H2	Combustion engine powered by combustion of hydrogen	Urban commuting and short-haul transportation ¹ , especially in regions with existing hydrogen infrastructure or in net-zero use cases where quick refuelling is important
NH3 ICE	Combustion engine powered by combustion of ammonia	Agricultural and maritime sectors , especially in regions with existing NH3 infrastructure (agriculture) or relying on relatively high energy density for long distance transportation (maritime), with potential to reach carbon-neutrality ²
NG ICE	Combustion engine powered by combustion of natural gas (either dual-fuel combustion or full natural gas)	Long haul transportation or heavy-duty applications (e.g., construction equipment), typically leveraging existing NG infrastructure , with trade-offs between cost of retrofitting and ability to abate CO2e emissions

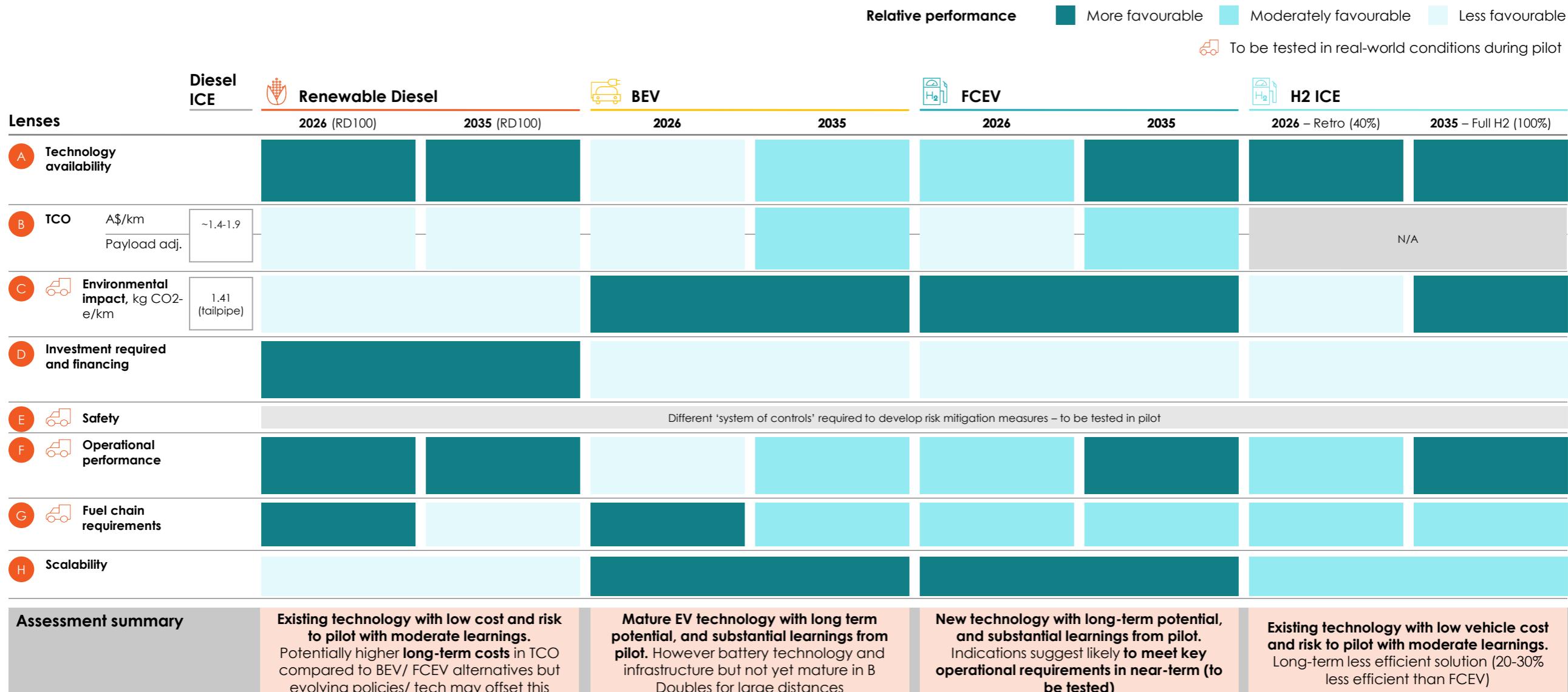
1. Typically used for shorter distances than FCEV due to reduced energy efficiency

2. No full net-zero CO2-e due to NOx emissions

The four shortlisted technologies were assessed across 8 dimensions and 17 criteria

Lenses	Criteria	Unit
A Technology availability	Technology readiness	Qualitative
	OEM readiness	Qualitative
B TCO	TCO	A\$/km
C Environmental impact	Carbon emissions impact	g CO2-e/km
	Other nature impact	Qualitative
D Investment required	Upfront investment	A\$
	Ability to get gov't support	Qualitative
	Ability to get loan/funding	Qualitative
E Safety	Safety	Qualitative
F Operational performance	Payload	T
	Range	km
	Transit time	hours
	Reliability	Qualitative
	Resilience	Qualitative
G Fuel chain availability	Fuel / energy availability	Qualitative
	Infrastructure availability	Qualitative
H Scalability	Scalability	Qualitative

Four technologies were shortlisted from the initial long list based on technology availability and environmental impact, and then evaluated through holistic trade-off analysis to enable further technology prioritisation


Fuel type: Diesel Electricity Hydrogen

Technology	Key advantages	Key constraints
Renewable diesel (RD)	RD provides the lowest cost and risk for the pilot, and most ready to roll out in the near term to reduce line haul emissions (e.g., only limited infrastructure upgrades required)	RD100 offers lower carbon reduction (~70-90% ¹ lifecycle fuel CO ₂ abatement) with minor reduction in fuel efficiency of renewable diesel compared to conventional diesel. Potentially higher long-term costs due to feedstock limitations in Australia and competition from other hard-to-abate sectors (aviation, mining). However, import options, PtL advancements and supportive policies could ease feedstock constraints
BEV	Represents a mature Net Zero emission vehicle and charging technology , with technology evolving for heavy-duty-trucks (HDT). Required infrastructure might have synergies with EV passenger vehicles and could be lowest cost technology in 2035	Vehicle technology does not meet key operational requirements in the near-term (due payload restrictions, no. of stops, and driver requirements), with some restrictions potentially still present in 2035, and scaling would require significant infrastructure upgrades to serve (competing) demand
FCEV	Represents a new Net Zero emission vehicle and fuel technology which likely meets key operational requirements in near-term , and is expected to have TCO on par with BEV by 2035	New vehicle and fuel technology with limited at-scale testing for line haul and in Australia, with associated risks. High upfront CAPEX required to build the required H ₂ infrastructure, and scaling beyond the pilot would require further build-out of still nascent hydrogen supply chain . Further, large amounts of (sea) water consumed for the process (~250k litre of H ₂ O per truck p.a.)
H2 ICE	Retrofit (2026) Lower vehicle CAPEX investments vs. FCEV and full H₂, with flexibility to blend H ₂ with diesel and/or RD whilst H ₂ infra is built out	Retrofit potentially not backed by OEMs and dependent on local service provider, and not a Net Zero technology (~60% lifecycle fuel CO ₂ abatement). High upfront CAPEX required to build the required H ₂ infrastructure, and expected slow scaling of the fuel chain
Full H₂ (2035)	Represents a new Net Zero emission vehicle and fuel technology which meets key operational requirements	Likely not a 2035 technology as 20-30% less efficient than FCEV

1. Scope 1 offsets (100%) eligible for Safeguard Mechanism credits

Source: Hydrogen Insights, GEP, CLC, Expert interviews, IEA, CSIRO, GHD Advisory

RD may offer a low-risk bridge, whereas BEV and FCEV indicate strongest long-term potential but with challenges in nascent technology and supply chain; H2 ICE not a likely long-term solution

Three out of the four shortlisted technologies were selected by the project partners for further detailing out for piloting: Renewable Diesel, FCEV, and BEV

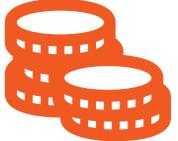
Technology	Project partners' position	Implication for pilot selection
Renewable diesel (RD)	Interest in further exploring RD pilot due to ability to rapidly mobilise, lower risk and ability to use as demonstration of mobilising together as industry partners	Selected for further detailing out for piloting
BEV	Interest in further exploring BEV pilot due to long-term potential incl. common infrastructure benefits, however contingent on advances in BEV technology to deliver operational needs	Selected for further detailing out for piloting
FCEV	Interest in further exploring FCEV pilot due to significant learnings with novel technology (e.g., FCEV B-Double configuration), operational suitability, and long-term potential contingent on supply chain developments	Selected for further detailing out for piloting
H2 ICE Retrofit (2026)	Preference to pilot other H2 technologies for learnings and CO2-e impact	Not selected – no further exploration of technology to be progressed
Full H2 (2035)	Preference to pilot other H2 technologies for learnings and CO2-e impact	Not selected – no further exploration of technology to be progressed

Table of Contents

Executive Summary

Introduction to the CLC and Line Haul Working Group

Strategic assessment and prioritisation


Pilot design and deployment simulations

Where to from here

Acknowledgements

The purpose of the pilots is to test for operating and financial outcomes of the technologies (relative to conventional diesel) in heavy duty line haul to inform prioritisation and scaling planning

Example KPIs

Financial outcomes

- Total Cost of Ownership
- Energy unit input costs (A\$ per km)
- Payload adjustment
- Incremental operating cost (including secondary impacts such as site usage impacts)
- Investment requirements (capex)

Operating outcomes

- Operational incidents
- Modifications on operational value chain
- Impact on cargo weight
- Journey time
- Vehicle maintenance costs
- Safety compliance

Market information

- Customer Service Level Agreement compliance (e.g., on time pick up and delivery)
- Willingness to pay from customers for cost premium (if applicable)
- Customer prioritization of net zero outcomes

Environmental outcomes

- Carbon emissions reductions
- Other emissions reductions
- Estimations on Scope 1 and 3 carbon savings

Ecosystem information

- Compliance with regulations (e.g., Basic Fatigue Management (BFM), load limits, any other non-negotiable compliance limitations)
- Technology availability
- Refuelling / recharging Infrastructure gaps and investment required
- Fuel chain requirements
- Scalability

For final pilot modelling, the project partners built each pilot on a ‘best possible’ scenario with an overlay of realistic, existing operations to test the upper bounds of feasibility

‘Best possible’ scenario assumptions

Vehicle: Highest-performing vehicles currently on the market

Infrastructure: Existing national infrastructure with implementable **upgrades and additions**

Operations: Optimal operational conditions (e.g., weather, traffic, etc.)

Rationale for using ‘best possible’ scenario assumptions

- Provides ability to test the upper bounds of **commercial and operational feasibility**
- Offers clear view of which technologies are **viable to scale today**, vs. which require **further system-level unlocks**, and which remain **out of reach** in the short term

The performance of all pilot technologies would be **benchmarked against conventional diesel** on core criteria (e.g., time, payload, cost) across identical lanes and into **realistic, existing operations**

Pilots were designed for the three prioritised technologies

		Renewable Diesel (RD)	BEV	FCEV
Pilot design	Vehicle (#)	Mercedes Benz Actros (1)	Windrose EV (2)	HDrive FCEV TS70-310 (2)
	Fuel/Energy Source	Renewable Diesel (HVO100)	100% renewable energy	Green hydrogen
Lane		Sydney <> Melbourne (~900 km)		
	Number of refuelling stops (excl. start / end point)	0 stops required	3 stops required	2 stops required
	Refuelling method	Portable tank (leased) placed in 1 location	Dedicated heavy haulage charging infrastructure	Portable hydrogen refuelling sites
	Fuel cost (\$/km)	-	~1.5	~3.3
Timeline	Pilot duration	11 weeks (Fuel volume governed, 69K litres)	6-12 months	3 months
	Data capture / anticipated learnings	Driveability, freight transported lubricating oil analysis, vehicle and driver identification data	Range / charging time, payload performance, BEV operation and servicing , cost and lead time to upgrade grid	Costing and operational impact of hydrogen refuelling infrastructure, FCEV operation and servicing, energy consumption variability
Considerations		Relatively easy integration into existing freight operations ("drop-in" fuel) and minimal disruption to existing infrastructure, but no fully net-zero potential Logistical decisions and work required around storage tanks, certification, and assurance	Vehicle range and charging time need to be sufficient to meet driver hours regulations (BFM) Payload often compromised due to heavy battery Timeline and cost associated with infrastructure upgrades High variation in charger infrastructure cost Prime mover premium vs. diesel ICE	Availability and pricing of refuelling infrastructure Availability and pricing of green hydrogen along the Hume Highway Prime mover premium vs. diesel ICE

Pilot design and deployment simulations highlighted pilot readiness for RD (despite immediate scaling limitations), and ideal timing for BEV and FCEV pilots being from mid 2026 to enable testing of scalable next gen tech and infrastructure

Renewable Diesel (RD)

BEV

FCEV

Corridor and load

Sydney <> Melbourne (~900 km) with B-Double load (~68t GCM trucks)

Pilot status & timelines	<p>Currently insufficient pricing support / customer willingness to pay for immediate commercial progression – Pilot design and deployment simulation demonstrated that the technology is technically viable but insufficient market willingness to pay premium and lack of pricing mechanisms to support commercial viability</p>	<p>Reconvening mid 2026 to decide on timing of activation of pilot – BEV technology shows strong momentum but currently not practical and feasible considering current range and charging times of BEV models for B-double line haul</p> <p>Currently working with industry and government partners on 'critical unlocks'</p> <p>Closely monitoring existing pilots in other settings to inform future pilot design</p>	<p>Reconvening mid 2026 for re-assessment of viability of FCEV pathway - pending resolution of critical infrastructure and supply chain gaps that currently prevent operation and renewed assessment of its competitiveness compared to other pathways</p>
Core advantages	<p>"Ready now" as a drop-in fuel that integrates easily into existing fleets and supply chains with minimal mechanical or operational change (provided OEM approval)</p>	<p>Likely higher fuel security and price stability (vs. conventional diesel) due to local production of energy source</p> <p>Fast-growing momentum supported by advancing technology, rapid uptake in adjacent transport sectors, and emerging policy incentives</p>	<p>Fuel technology is ready to support B-double line haul requirements (e.g., only 1 stop needed with ~15min refuelling time)</p>
Core challenges for commercial uptake	<p>Steep price premium at 250% (vs. conventional diesel) on an input which accounts for ~40% of total operating costs (fuel), combined with insufficient commercial mechanisms or policy incentives to bridge the green premium gap</p> <p>Limited available feedstock volumes for scaling</p> <p>RD government funding focused on local RD production (vs funding import-based fuel pilots)</p>	<p>Current BEV prime mover battery capacity and charging times push modelled journey time (~16 hours) above regulated driver hours (14 hours on log book): modelling indicated five chargers would be required (full charge at end points; three top-ups enroute with total ~3 hour charging time)</p> <p>Lack of suitable charging infrastructure (e.g., Megawatt Charging System (MCS))</p> <p>Upfront capital cost of prime mover (up to 20-50% more than conventional diesel)</p>	<p>Limited to no hydrogen refuelling infrastructure on Sydney <> Melbourne corridor</p> <p>Lack of supply of portable hydrogen refuelling stations (capable of storing hydrogen at 700 bar) to Australia in lieu of permanent hydrogen hubs</p> <p>Hydrogen price barrier (up to ~3x cost per km vs. conventional for diesel)</p> <p>Upfront capital cost of prime mover (up to 300% more than conventional diesel)</p>

Pilot status: Deployment simulation confirmed currently insufficient pricing support / customer demand for scaling

Renewable Diesel: Detail on pilot design

Design element		Design choice
Pilot design	Prime mover and freight selection	Vehicle (#) Mercedes Benz Actros 2653 (1) B-Double range (km) Up to 1800 km GCM (t) 64 - 68t
	Transportation good	Grocery
	Fuel / energy	Fuel / energy source Renewable Diesel (HVO100) Emissions reduction (vs. diesel ICE, %) ~90% reduction on Greenhouse Gas Emissions on Lifecycle basis. Based on Standard fossil fuel comparator (94gCO2e/MJ) according to EU RED Standard Methodology
Network design and infrastructure strategy	Lane (km)	Sydney <> Melbourne (~900 km)
	Number of refuelling stops (excl. start / end point)	0 stops required, contingency measures in place through fuel level notification system and on-site inspections
	Refuelling method	Portable tank placed in 1 location (Midpoint for trial)
Financial	Expected cost (\$)	-
	Fuel cost (\$/km)	-
	Infrastructure ownership	Leased
Core relevant regulation & safety topics	Anticipated funding	Funding is key barrier to progress
		ISCC certification for Renewable Diesel OEM approval
Timelines	Commencement	Deployment simulation sufficient (on-ground pilot not required)
	Duration	11 weeks (Fuel Volume governed @ 69,000 litres)
Data capture / anticipated learnings		Driveability (e.g., utilisation, moving duration, #stops, fuel consumption), freight transported lubricating oil analysis, vehicle and driver identification data

Considerations:

- **Drop-in fuel:** integrates easily into existing fleets and supply chains with minimal mechanical or operational change, but no fully net-zero potential
- **Limited infrastructure needs:** requires only minor adjustments for tank storage, cleaning, and segregation
- **Assurance:** certification and traceability of feedstock and fuel quality are critical to claim emissions reductions credibly

Pilot status: Deployment simulation confirmed currently insufficient pricing support / customer demand for scaling

Renewable Diesel: Supply chain can be readily established within existing infrastructure, with some action required on refuelling sites, product assurance, operational control, and commercial & technological enablement

Topic	Outcomes
Refuelling sites	<ul style="list-style-type: none"> Portable storage tanks leased and located at customer site for direct vehicle dispensing Site assessment required to ensure adequate footprint and vehicle turning radius Single fill expected during pilot; refill managed via cloud-connected tank monitoring system and site inspection
Product Assurance & Certification	<ul style="list-style-type: none"> Renewable diesel supply ISCC-certified up to the portable tank inlet under current scope Ownership transferred at inlet (rather than taking ownership at storage facility / vessel) to avoid additional site certification burden for project partner Opening the isotainer not considered as “transport” as long as some detail can be provided on sampling procedure and reason
Operational Controls & Compliance	<ul style="list-style-type: none"> Dangerous Goods storage obligations to be addressed (SafeWork notification, SDS availability, integration into company processes). Protocols required for refilling, monitoring, and safety management (e.g., standardised protocol for site inspection)
Commercial & Technological Enablement	<ul style="list-style-type: none"> OEM approvals obtained for use of renewable diesel in participating fleet Customer contracts updated to reflect renewable fuel use

Pilot status: Reconvening mid 2026 to decide on timing of activation of on-ground pilot

BEV: Detail on pilot design

Design element		Design choice
Pilot design	Prime mover and freight selection	Vehicle (#) Windrose EV (2)
		B-Double range (km) 255
		GCM (t) 68
		Transportation good Autoparts, groceries
Fuel / energy	Fuel / energy source	100% renewable energy
	Emissions reduction (vs. diesel ICE, %)	100%
Network design and infrastructure strategy	Lane (km)	Sydney <> Melbourne (~900 km)
	Number of refuelling stops (excl. start / end point)	3 stops required
	Refuelling method	Dedicated heavy haulage charging infrastructure (XX MW)
Financial	Expected cost (\$)	Not evaluated due to lack of viability
	Fuel cost (\$/km)	~\$1.5 (based on ~2.1kWh/km, ~\$0.7/kWh)
	Infrastructure ownership	Requires third party investment of multiple charger locations
	Anticipated funding	Not evaluated due to lack of viability
Core relevant regulation & safety topics		Vehicle design & access approval (e.g., ADR compliance)
		BEV safety and infrastructure design (e.g., high-voltage systems)
Timelines	Commencement	Work in progress (see chapter "Where to from here")
	Duration	6-12 months
	Data capture / anticipated learnings	Range / charging time performance, payload performance, BEV operation and servicing, cost and lead time to upgrade the grid

Considerations:

- **Operational fit:** range and charging time must align with driver fatigue and hours-of-service limits (BFM compliance)
- **Payload trade-off:** heavy battery packs reduce payload capacity on long-haul routes
- **Infrastructure challenge:** significant grid and depot upgrades required; high upfront vehicle cost vs. diesel
- **High variance in charger infrastructure cost:** Requires viable business case for third party providers.
- **Vehicle premium:** high upfront investment for vehicle (20-50% higher than comparable diesel ICE)

Pilot status: Reconvening mid 2026 to decide on timing of activation of on-ground pilot

BEV: Deployment simulation revealed today's 'best case' BEV solution is not viable for scaling B-Double line haul operations; on-ground pilot to be implemented in ~18 months leveraging scalable next generation technology

Key modelling assumptions

Insights

Next steps

BEV prime mover

- 38t GCM (vs max 68t)
- 90 km/h max speed
- ~700 kWh battery capacity
- 400 kW charge speed (vs max 870 kW)
- ~670 km OEM-rated range (WLTP)¹

Time (~16h incl. 2.5h rest time)

- 11h total driving time
- 2.5h total charge time during route; combined with rest time
- 0.75h total connect/disconnect time
- 1-1.5h total start/end-of-trip time

Driver policy

- Basic Fatigue Management guidelines (BFM)

Current BEV technology does not meet requirements as it can **push driver hours above the 14 hours permissible** in a 24-hour period

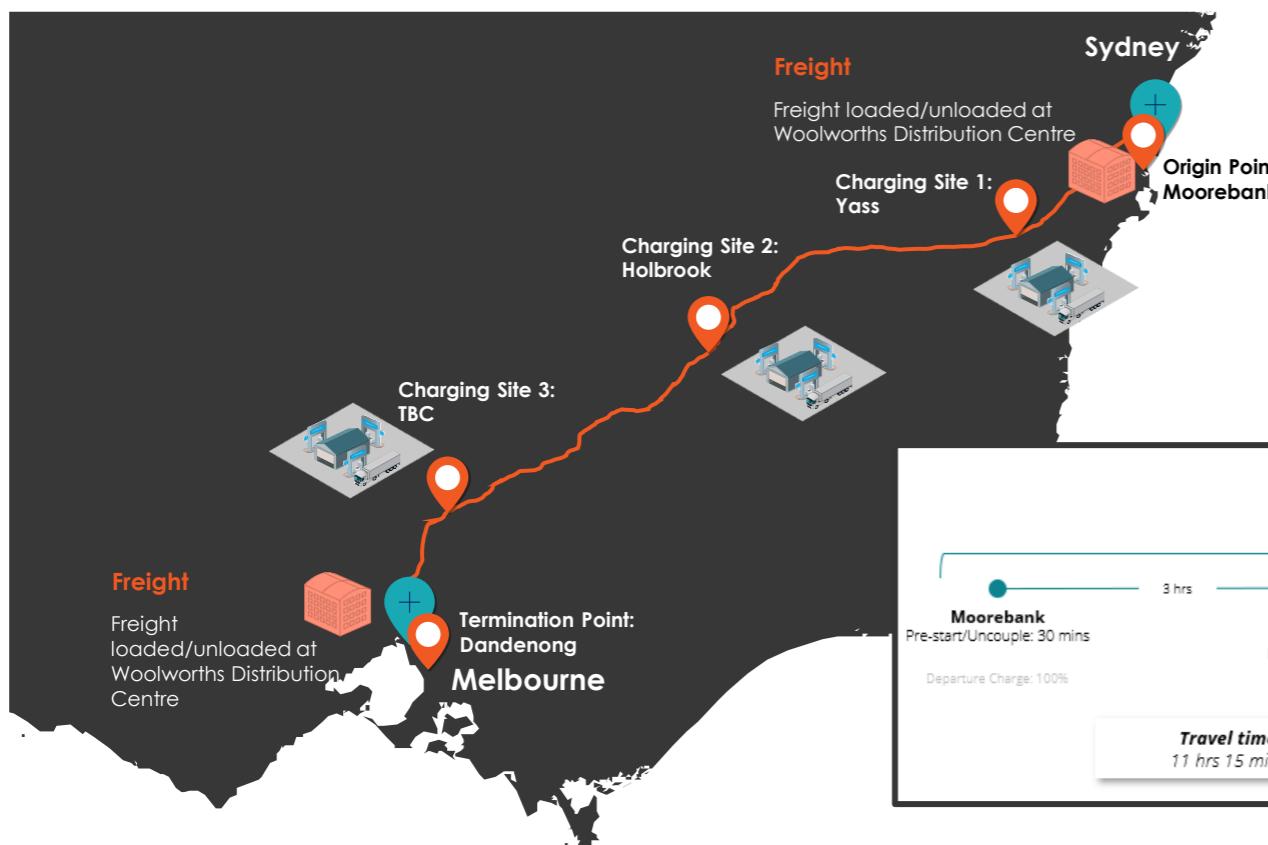
- The **standard truck driving time** between Melbourne and Sydney is **~11 hours**, which is already a challenge for driver Basic Fatigue Management (BFM)
- Iterative BEV modelling estimated an additional vehicle charging time of **~2.5 hours per time** (excl. 45 min connect/disconnect time)
- Conflicts with BFM hours common on the route as the 'standard'

Note: The scenario was modelled using **optimistic assumptions**, implying BEV technology and infrastructure would need to **close a considerable gap to become viable for heavy duty line haul** – with key assumptions including:

- **Availability of enroute 400 kW chargers** (as well as origin and destination chargers), whereas as of 2025, the largest highway chargers **planned are 200 kW and only in a subset** of the locations
- **Low-weight B-double route** at 38t GCM (atypical load weight) to see if there is a viable BEV use case² (standard GCM is 64 to 67t for B-Double)

Project partners will reconvene mid 2026 to decide timing of activation of pilot

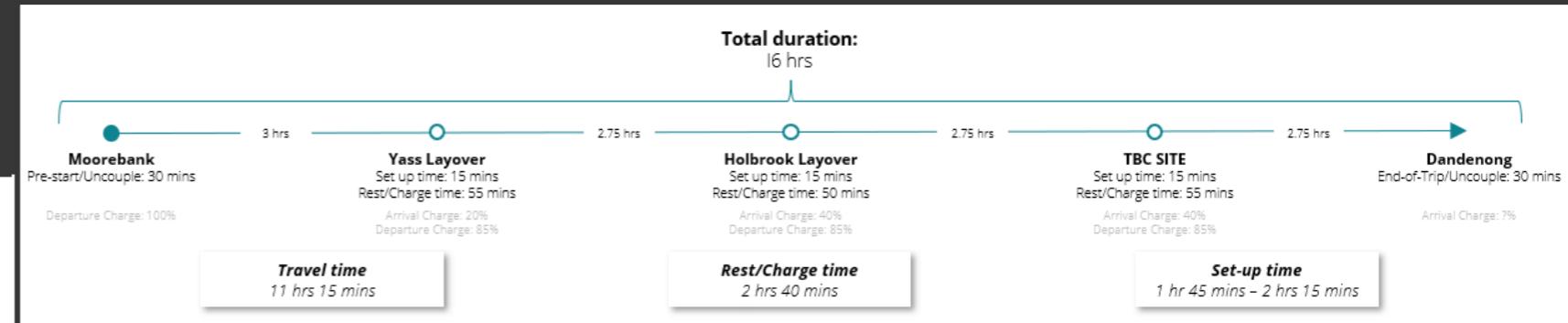
- **Next-generation BEV prime movers**, with improved range and charging speed, are expected to be available in Australia in 18-24 months
- With availability of **megawatt charging** (1000 kW) and **doubled battery capacity** (1430 kWh), BEV simulation shown to be compliant and operationally viable at trip completion in 11.7 hours


1. Real-world range typically ~20% lower than WLTP; in addition, range is speed, terrain, and gross mass dependent and may vary with weather conditions and driver behaviour
2. Various other weights at 62.5t and 55t were also modelled with only relatively small impacts on the charge location and time needed

Pilot status: Reconvening mid 2026 to decide on timing of activation of on-ground pilot

BEV: Visualisation of modelled interstate routes and potential charging points – example for SYD to MEL

Route example: Sydney - Melbourne



Loading/off-loading

Charger location

Modelling results for original pilot design

- Modelling of the initially proposed **BEV B-double trial route** from Sydney (Moorebank) to Melbourne (Dandenong) generated a **total trip duration of 16 hours**
- The modelled trip **exceeded the 14 hours permissible** under the Advanced Fatigue Management Scheme (AFMS – regarded as the “standard” for this route), largely driven by a **total charge time of ~2.5 hours**

Pilot status: Reconvening mid 2026 to decide on timing of activation of on-ground pilot

BEV: Even though prime movers are not viable for most use cases today, the evolving landscape could quickly shift the equation provided Australian purchasing scale is sufficient to get access

	Generation 1¹	Generation 2	Generation 2+²
Estimated time of deployment³	Current	Mid 2026	18-24M
Maximum GCM (t)	44	68	74
Battery (nominal kWh)	540	729	875
Useable charge (%), KWh	60%, 324	90%, 656	90%, 788
Max charge power (kW)	250	870	1,000
Min charge time (h)	1.30	0.75	0.79
Payload (t)	24.6	24.7	24.7
Energy consumption (kWh/km)	1.6	1.25	1.25
Range (km)	203	525	630
Payload (t)	N/A	40.1	40.1
Energy consumption (kWh/km)	N/A	1.85	1.85
Range (km)	N/A	355	426
Price (\$)	~630,000	~\$450,000	~\$430,000

1. Not suitable for B-Double line haul, but existing generation 1 pilots are happening now and will inform interstate pilot

2. Best estimate

3. Requires purchasing scale for Australian businesses to get access

Pilot status: Reconvening mid 2026 to decide on timing of activation of on-ground pilot

BEV: Viability in heavy duty line haul also challenged by lack of heavy duty haulage charging infrastructure, which typically comes with 12+ months timeline and associated costs and risks

Activity	Stakeholders	Timing	Estimated cost per 400 kW charger capacity
1. Site identification	Landowners / Lease holders	4-6 weeks	Charger: ~\$800k
2. B-Double accommodation	Landowners / Lease holders	1-2 weeks	Switchboard: ~\$200k
3a. Grid Offer – No augmentation needed	Distribution business	2-4 months	Transformer: ~\$125-375k
3b. Grid Offer – Augmentation needed (likely case)	Distribution business	3-6 months	
4a. Fixed Price Install contract - Design	EPC	1 month	
4b. Fixed Price Install contract – Install contract	EPC	1 month	
Total (may vary widely on the circumstances)	Typical timelines: ~12+ months	~\$1.1 – 1.4M	

On top of infrastructure timeline and costs of construction, specific context and associated risks also need to be taken into account

Pilot status: Reconvening mid 2026 for re-assessment of viability

FCEV: Detail on pilot design

Design element		Design choice
Pilot design	Prime mover and freight selection	Vehicle (#) HDrive FCEV TS70-310 (2)
		B-Double range (km) ~435km (85% of tank capacity used)
		GCM (t) 68
Fuel / energy	Transportation good	Grocery, other
	Fuel / energy source	100% green hydrogen
	Emissions reduction (vs. diesel ICE)	Net-zero fuel, but effective reduction estimated up to 85% depending on transport requirements
Network design and infrastructure strategy	Lane (km)	Sydney <> Melbourne (~900 km)
	Number of refuelling stops (excl. start / end point)	2 stops required
	Refuelling method	Portable hydrogen refuelling sites
Financial	Expected total cost (\$)	Not evaluated due to lack of viability
	Fuel cost (\$/km)	\$3.30/km based on 6.5 km/kg, \$22/kg ex gate, excl transport
	Infrastructure ownership	Not evaluated due to lack of viability
	Anticipated funding	Not evaluated due to lack of viability
Core relevant regulation & safety topics	Vehicle design & access approval (e.g., ADR compliance) Hydrogen safety / infrastructure design (e.g., 700 bar storage) Green electricity certification (e.g., REGO)	
Timelines	Commencement	Work in progress (see chapter "Where to from here")
	Duration	3 months
Data capture / anticipated learnings		Costing and operational impact of hydrogen refuelling infrastructure, FCEV operation and servicing, energy consumption variability

Considerations:

- Infrastructure constraint:** Limited green hydrogen refuelling network with high cost barriers and limited availability
- Fuel availability and cost –** Limited production sites leading to delivered hydrogen cost price spikes
- Vehicle economics:** Prime mover premiums can be up to 2x as high vs. comparable diesel ICE, with total cost competitiveness dependent on hydrogen price and utilisation rates

Where to from here

Executive Summary

Introduction to the CLC and Line Haul Working Group

Strategic assessment and prioritisation

Pilot design and deployment simulations

Where to from here

Acknowledgements

The findings of the pilot design and deployment simulation phases gave insight into the critical unlocks needed to make the pathways viable and scalable

Renewable Diesel (RD)

Identified challenges to scale

Price premium over conventional diesel (~250% multiplier) with customer demand being relatively **nascent and price sensitive**

Supply constraints limiting available feedstock volume for scaling (only a problem once market reaches maturity)
Market is new, requiring funding opportunities to be **prioritised towards local manufacture** rather than import-based pilots

BEV

Insufficient BEV technology capability to accommodate operational demands of line haul B-Double (incl. driver hours)

Lack of Megawatt Charging System (MCS) to enable line-haul practicality

Capital upfront barrier for prime movers (up to ~20-50% more than conventional diesel) despite lower TCO over time

FCEV

Immediate limiting factor

Lack of critical infrastructure in Australia (i.e., **portable hydrogen refuelling stations and equipment**, capable of delivering hydrogen at 700 bar)

Green hydrogen price barrier identified as next challenge, especially **up along Hume Highway to Sydney (2.9x cost per km vs. conventional for diesel)**

Capital upfront barrier for prime movers (can be 300% more expensive than conventional diesel)

Critical unlocks

Policy support on RD investment
Incentives for overcoming demand side economics increasing customer need (e.g., Safeguard facilities are a potential demand source)

Collective action across industry and government will be required to scale technologies that carry an “early adoption” cost premium and lack supporting infrastructure

Higher range with B-double load (~800km)

Improved charging time to align with mandatory breaks (~500-600km range in ~30 min or less)

Manageable upfront costs (BEV prime mover)

Increased **availability of affordable portable hydrogen refuelling stations** in Australia (700 bar)

Improved green hydrogen pricing (~\$5-6/kg)

Manageable upfront costs (FCEV prime mover)

Pilot status: Deployment simulation confirmed currently insufficient pricing support / customer demand for scaling

RD: Whilst the renewable diesel operations are feasible, the products ability to scale will depend on overcoming fuel cost barriers and obstacles to customer demand

Challenge	Critical unlock	Explanation	Underlying change required
Fuel cost	Fuel cost more closely aligned with conventional diesel ($\approx 250\%$ estimated premium)	Currently renewable diesel carries a price premium of $\approx 250\%$ over conventional diesel, making it commercially challenging in the absence of commercial mechanisms or policy incentives to bridge the price gap (and carbon cost)	Policy support on RD pricing and / or supply increase to bring opex in line with conventional diesel
Supply constraints	Supply constraints limiting available feedstock volume for scaling. Only a problem once market reaches maturity.	Feedstock for renewable diesel also has alternative uses including sustainable aviation fuel. As demand increases globally it will be increasingly difficult to source feedstock.	Developing a resilient supply chain through supply and manufacturing capability . Securing feedstock supply with long-term contracts.
Customer Demand	Customer uptake is constrained by the economic viability of the unsubsidised fuel premium. Market is new requiring opportunities to be prioritised towards local manufacture.	Market demand is largely unquantified given the restricted availability and commercial barriers. It is also a new market. Renewable Fuels projects are competing to obtain the needed resources from a limited pool to serve an emergent market.	Incentives to bridge the economic gap , enabling customers to convert sustainability targets into commercial procurement. Existing mandates have predominantly focused on FAME (fatty acid methyl ester) and excluded RD. Including RD could broaden the customer base. Safeguard facilities are a potential demand source.

Scaling renewable diesel depends on coordinated market formation rather than technology readiness. Progress will require alignment across fuel producers, distributors, and freight buyers to provide demand certainty that **can** meet a **developing customer need**.

Government intervention should target structural constraints and investment.

Policy focusing on building customer demand will develop the market.
Incentives should also target supply chain resilience through infrastructure modifications and feedstock security critical to establish reliable, long-term renewable diesel supply

Pilot status: Reconvening mid 2026 to decide on timing of activation of on-ground pilot

BEV: Momentum is accelerating, but at-scale viability hinges on roughly doubling BEV battery capacity and charging speed, investing in high-powered charging infrastructure, and mitigating upfront cost barriers

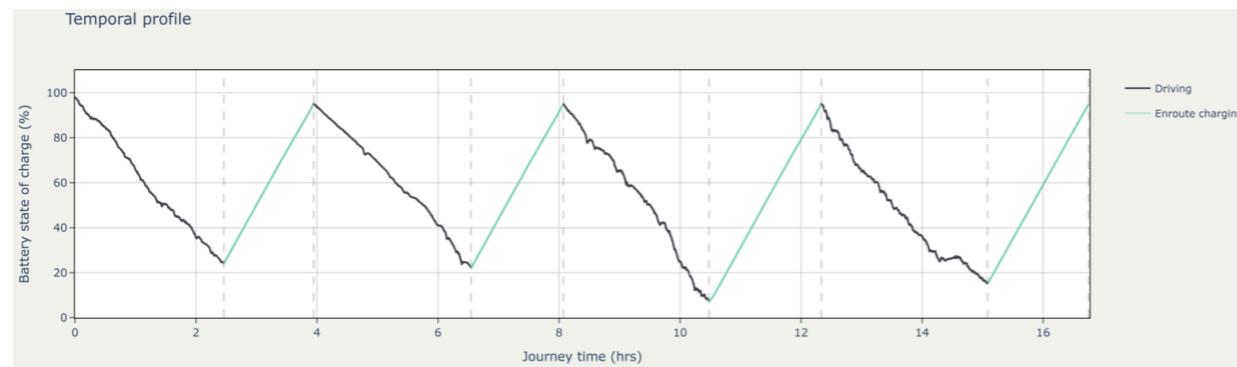
Challenge	Critical unlock	Explanation	Underlying change required
Vehicle range (example on next page)	Improved range (~400+km) with B-Double load	Whilst current long-haul BEVs may deliver ~600 km range under ideal conditions and lower payload, heavy loads, terrain, and weather conditions significantly reduce the “nameplate” performance	Advancement in battery technology with improved density (minimum initial target of ~400 Wh/kg) and capacity
En-route charging (example on next page)	High-powered charging to provide ~500-600km range in ~30min or less at strategic sites (requires C-rate of close to 2.2C (i.e., 2.2 x battery's capacity; takes 30 minutes for a full charge or discharge); charging at ~\$0.50/kWh for diesel parity)	Current modelled charging times are significantly longer than mandatory driver rests/breaks , eroding utilisation and pushing total travel time; current commercial charging rate close to ~\$0.70/kWh	Acceleration of Megawatt Charging Systems (MCS) or equivalent Dual Combined Charging System (CCS) across strategically selected sites along major freight corridors Substantial upgrades to grid infrastructure, advanced thermal management, and robust connector designs
Upfront investment	Upfront capital requirements more closely aligned with ICE (currently ~20-50% BEV premium)	Despite estimated lower TCO , BEVs currently carry a ~20-50% higher upfront cost compared to their diesel counterparts, posing significant barriers to smaller operators (“premium paradox”) – incl. some concern about residual value of first generation BEV	Innovative financing models, grant programs , or other purchase incentives Lower market prices due to technological advancements or increased competition A cost on carbon would improve any TCO calculations

BEV momentum is accelerating, but scalability remains constrained by technology and infrastructure. While BEVs may deliver both **decarbonisation and energy security**, large-scale deployment requires advances in vehicle capability and charging infrastructure to achieve commercial viability

With capable “third generation” BEVs expected in 18-24 months, industry and government must act now.

Joint action is essential to accelerate rollout of high-powered charging infrastructure and establish the policy frameworks needed to enable large-scale deployment

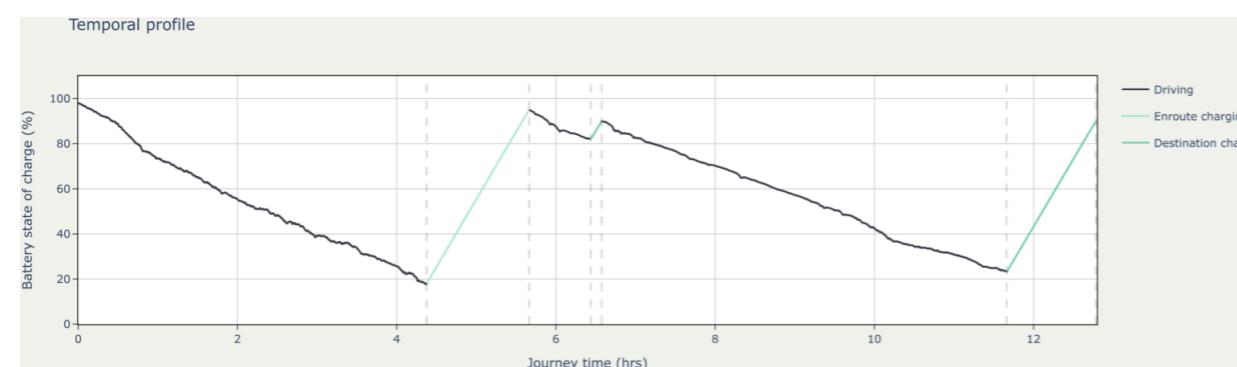
Pilot status: Reconvening mid 2026 to decide on timing of activation of on-ground pilot


BEV: In a possible future state with doubling of battery capacity and availability of megawatt charging, the Melbourne – Sydney trip can become compliant with permissible driver hours and operational requirements

Scenario

Current

700 kWh battery capacity


400 kW charge power

Example possible future state

1430 kWh battery capacity

1000 kW charge power

Implications

- In a possible future scenario with **improved battery capacity and charging**, the Melbourne <> Sydney trip can be **completed in under 12 hours**, making it compliant with driver hours and operational requirements
- In the **current scenario**, the battery capacity and charging speed necessitates **~3 hours of charging time** along the route, pushing it above the permissible hours
- In a possible future scenario, **number of stops and charging time can be sufficiently reduced** to make it **viable provided driver breaks are aligned with the charging time**
- Alternate solutions could involve **trailer swapping between multiple BEVs, or a combination of BEV and ICE vehicles**
- The feasibility relies on the **availability of multiple megawatt charging stations** to implement this concept at scale
 - As of 2025, the largest highway chargers are 200 kW, and only in limited locations
 - Recent tests conducted in **China and Europe** have demonstrated promising results, with **megawatt charging system capabilities now believed to be nearing commercialisation**

Pilot status: Reconvening mid 2026 for re-assessment of viability

FCEV: Major infrastructure gaps currently limit the pathway for FCEV, with lack of availability of refuelling stations and associated significant cost barriers

Challenge	Critical unlock	Explanation	Underlying change required
Infrastructure	Availability of affordable storage tanks able to operate at a pressure of 700 bar, supported by compatible hydrogen delivery infrastructure	There is a lack of critical infrastructure in Australia, with no access to affordable, portable hydrogen refuelling stations and equipment capable of delivering hydrogen at 700 bar (note: permanent station ~\$200M capital investment) - slower infrastructure development risks FCEV readiness relative to potentially faster-moving alternatives	Increased availability / market players in portable hydrogen refuelling stations in Australia, driven by large scale / transport hydrogen demand to underpin capital cost
Fuel cost	Hydrogen price of ~\$5-6/kg to become more cost competitive with diesel ICE	Hydrogen comes with a high price premium, especially up along Hume Highway to Sydney (2.9x cost) per km vs. conventional for diesel) due to limited production around Sydney and high transportation cost	Pooled demand for green hydrogen production, transportation, and storage across key points of corridor – supported by government incentives
Upfront investment	Upfront capital requirements more closely aligned with ICE (currently ~3x higher cost)	FCEV vehicles cost circa \$1.1 m per vehicle, compared to \$320k for a comparable B-Double rated diesel prime mover	Innovative financing models, grant programs , or other purchase incentives Lower market prices due to technological advancements or increased competition A cost on carbon would improve any TCO calculations

FCEV needs to overcome major infrastructure gaps. Streamlined collaboration across OEMs, fleet, hydrogen providers, infrastructure and shippers/customers is the only way to break the **“chicken and egg” deadlock** and create the confidence and demand needed for scale

The next hurdle is cost. FCEV trucks, hydrogen production and infrastructure remains expensive, and policy and funding support are essential to **de-risk early investment, standardise frameworks, and accelerate infrastructure build-out**

To address the 'critical unlocks' required to accelerate large-scale deployment, five opportunities have been identified that would require coordinated action across the freight ecosystem

Priority area	Next step	Ideal outcome (~12 months)
Demand aggregation	Pool demand for prime movers, fuel production, and corresponding infrastructure to solve "chicken and egg" problem and provide producers with confidence and demand needed for scale	Shared EOI / procurement framework developed and submitted to relevant players (e.g., OEMs, hydrogen producers) Initial offers received on hydrogen fuel and portable stations along Hume highway
Infrastructure	Secure joint infrastructure commitments (e.g., MOUs) between core value chain players and government to deliver first high-power charging nodes and (portable) hydrogen refuelling stations (HRS) on Hume corridor	Minimum of five (BEV) or three (FCEV) confirmed, strategic public-private infrastructure sites with delivery timelines in next 12-24 months Secured partnership with portable HRS players
Investment mobilisation	Develop co-funded (pilot) investment framework with government / state to de-risk first commercial deployments Review capital turnover timeline and prepare business cases for net-zero technology alternatives	Aligned funding mechanism with government (e.g., fuel opex subsidy, prime mover grant, infrastructure investment) Defined roadmap incl. allocated company budgets for net-zero alternatives
Policy & Regulation Reform	Define priority regulatory unlocks with the government to accelerate policy reforms (e.g., tax treatment, harmonised refuelling / recharging sites permitting)	Regulatory roadmap agreed with relevant government bodies
Measurement & Reporting	Establish a sector baseline and progress tracker for decarbonisation efforts and related policy shifts	Public "Progress Tracker" by mid 2026 with annual updates

Progress will depend on each segment of the value chain taking coordinated, targeted actions to address the identified priority areas and remove key barriers to scale

Value chain player	Action	Relevant priority areas
Freight owners	<p>Embed low-emissions logistics requirements into procurement</p> <p>Provide green delivery options for end customers (with willingness to pay for green premium)</p> <p>Publicly report on decarbonisation progression in logistics / freight</p>	Investment mobilisation
Logistics providers	<p>Pool purchasing intent across freight companies for next-generation BEV (and possibly FCEV trucks) with right hand drive to secure OEM delivery slots in Australia</p> <p>Pool refuelling infrastructure demand along Hume Highways and other key corridors (and possibly hydrogen production once feasibility confirmed)</p> <p>Publicly report on decarbonisation progression</p> <p>Work with government and other value chain players on policy reforms needed</p>	Demand aggregation Investment mobilisation Policy & regulation reform Measurement & reporting
Energy players	<p>Understand core locations of fuel / energy demand for line haul across key corridors through collaborating with other value chain players</p> <p>Identify and commit to corridor-based supply points for renewable diesel, charging infrastructure (and possibly green hydrogen production / refuelling)</p>	Demand aggregation Infrastructure
Financial institutions	<p>Design green financing products to lower capital barriers for early adopters (e.g., discounted loan rates on prime movers)</p>	Investment mobilisation
OEMs / technology partners	<p>Accelerate availability timelines for Gen-2+ BEVs (and FCEVs) suited to Australian line haul conditions (e.g., right hand drive, increased range for BEV)</p> <p>BEV – Deploy (public) megawatt charging infrastructure/stations in the required locations on the Melbourne to Sydney corridor.</p> <p>FCEV - Introduce portable green hydrogen refuelling stations in AUS market</p>	Demand aggregation Infrastructure

Acknowledgments

Executive Summary

Introduction to the CLC and Line Haul Working Group

Strategic assessment and prioritisation

Pilot design and deployment simulations

Where to from here

Acknowledgements

Acknowledgements

The Climate Leaders Coalition line haul road transport working group extends its gratitude to everyone who played a role in guiding this initiative and enhancing member learning through various workshops, meetings and presentations. We appreciate your commitment, enthusiasm and openness in sharing diverse viewpoints, which has allowed us to leverage the collective expertise on reducing line haul emissions.

We would like to dedicate a special thank you to:

Project lead and sponsor

Alan Beacham
Former Group Managing Director
Toll Group

Working group members and subject matter experts

Coalition

Beth Dowe
Executive Director
Climate Leaders Coalition

BLACKMORES

Ampol: Gemma Harrison, Adam El Atem, Frances van Reyk

Toll: Shaun O'Flaherty, Craig Lester, Bo Christensen

Woolworths: Winfred Lai, Ben Newton

Energy Australia: Jack Kotlyar

Ron Finemore: James Dixon

CBA: Louise Hatton

Schneider Electric: Tina Hu, Mathew Smith

BEV modelling

EcoRoute Advisory: Marceline Overduin

The views, opinions, and conclusions expressed in this playbook do not represent, and should not be interpreted as, the official positions, policies, or endorsements of any individual working group company. The inclusion of a company in the CLC line haul road transport working group does not imply the company's endorsement of any or all aspects of this report.

Acknowledgements

Participating CLC member CEO signatures

Alan Beacham
Former Group MD, Toll Group

Matt Halliday
CEO and MMD, Ampol

Amanda Bardwell
CEO and MD, Woolworths Group

Colette Munro
Zone President Pacific, Schneider Electric

Mark Collette
MD, Energy Australia

James Dixon
CEO, Ron Finemore

Alastair Symington
CEO, Blackmores

CLC Organising Committee

Ann Sherry
Co-chair

John Lydon
Co-chair

Lynette Mayne
Executive Chair,
The B Team Australasia

Ian Smith
Member

John O'Brien
Member

Judy Slatyer
Member

Keith Tuffley
Member

CLC Executive Team

Anna Skarbek
Member

Stuart Irvine
Member

Beth Dowe
Executive Director

Judy Slatyer
Project Director

Alina Jurcola
Project Director

Dr Jane Watts
Project Director

Disclaimer: This publication has been prepared for CLC members. The information contained in it is provided for general information purposes only and does not constitute legal or other professional advice. CLC members should conduct their own inquiries and seek independent professional advice before making any decision or taking any action that might affect their finances or business.

While care has been taken to ensure that the information contained in this publication is accurate and up to date at the date of publication, we do not make any representations or warranties (express or implied) about the:

- suitability of the information to particular member organisations or their circumstances
- the correctness or accuracy of information provided in the publication, including information from our member organisations.

This publication includes statements from CLC member organisations, and they do not necessarily represent the views of the CLC, The B Team Australasia or other member organisations.

Certain links in this publication may lead to websites, resources or tools maintained by third parties over whom we have no control. We make no express or implied representations or warranties whatsoever regarding such websites, resources or tools, and links to them should not be construed as an endorsement of them or their content by the CLC, The B Team Australasia or our individual member organisations.

Climate Leaders Coalition
www.climateleaders.org.au
An initiative of **The B Team Australasia**

©2023 The B Team Australasia Pty Ltd

WLTD0661638

THE B TEAM ▶

